

Life Cycle Analysis: a tool for decision making and strategic planning?

researching the value of LCA in Kenyan horticulture

Elsbeth Bingley

Carbon and Water Management in Horticultural Exports from East Africa

Simba Lodge, Lake Naivasha, Kenya 8th -9th December 2011

Life Cycle Analysis: a tool for decision making and strategic planning?

- Introduction to the 'Less Carbon' project
- Brief overview of LCA
- LCA in practice
- Enabling factors for successful planning

Less Carbon Project

Proactive response to retailer/consumer concerns

- Concern about a new 'barrier to trade'
- Feedback from industry 2008 consultation
- Anticipated requests for information by retailers
- Existing accreditation schemes require more information

Knowledge transfer

- Build capacity for LCA within Kenya Africa Knowledge Transfer Project
- Train graduate in LCA academic study and practical application
- Train staff on data collection

Data collection and analysis

- Develop data collection methodology
- Identify and address issues with data collection and analysis

Desired outcomes

Calculate a range of product carbon footprints

Identify 'HOTSPOTS'

Model potential [carbon/water/cost] reduction scenarios

Develop carbon [and water] reduction strategies for key crops

Identify operational and training issues

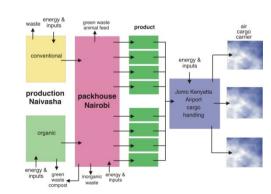
Respond to customer demands

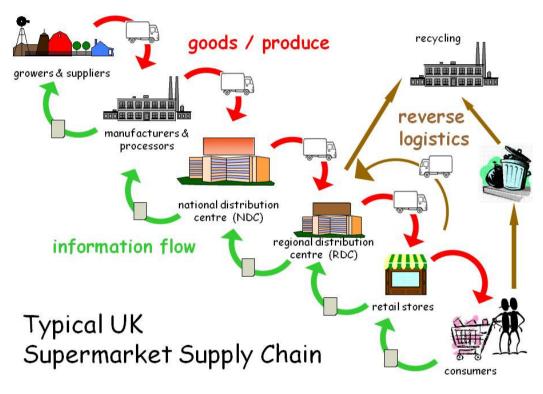
Reduce cost, carbon, and water use

Improve efficiency along the supply chain

ADDED VALUE ?
REDUCE COSTS + STREAMLINE PRODUCTION + NEW BUSINESS OPPORTUNITIES

Beyond Carbon...





The product lifecycle

Henry Matthews @ 2008 Writtle College

EMISSIONS FROM: INPUTS WASTE ENERGY WATER RESOURCE USE

Key parameters for LCA

LCA attempts to predict the overall environmental impact associated with a product, function or service

Define the boundaries

What to include and discard from the study

The system boundary – cradle to gate – cradle to grave – cradle to UK RDC

The functional unit

How do we compare products? Kg CO₂e per Kg product

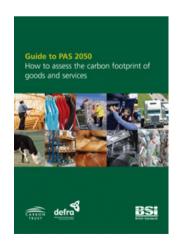
Data collection

Questionnaires & supplier data requests - design to fit production system

Filling the knowledge gap

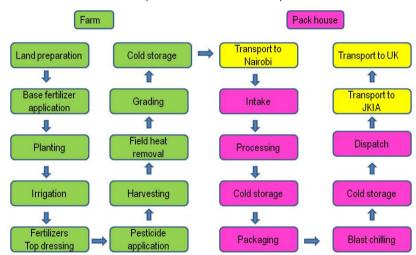
Using generic data – is it valid for Kenya?

LCA tools

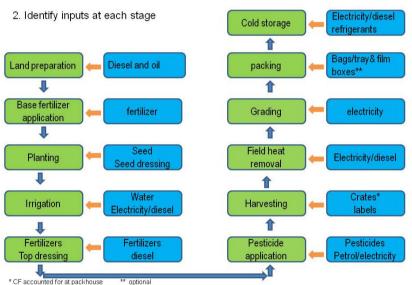

Internationally recognised standards
International, national & peer reviewed EF calculations
Industry standard software

ISSUES:

Lack of EF relevant to Kenya
Calculate EF
Identify 'best fit' EF
Peer consultation
Complexity of software
Create bespoke templates in SimaPro


SimaPro

The flow chart


ENERGY +INPUTS+ WATER +TRANSPORT+WASTE

Steps for calculating Carbon foot print

1. Produce a flow chart of operations on farm or for a product

Steps for calculating Carbon foot print

Simplified example:
Full process flow for export
horticulture product
= over 100 operations

Each input = discreet calculation Example:

Fertiliser NPK 22:22:22
3 x EF - raw material production (N,P,K) +
transport from country of origin +
Transport of fertiliser to farm

From results to strategy

Key factors - hotspots:

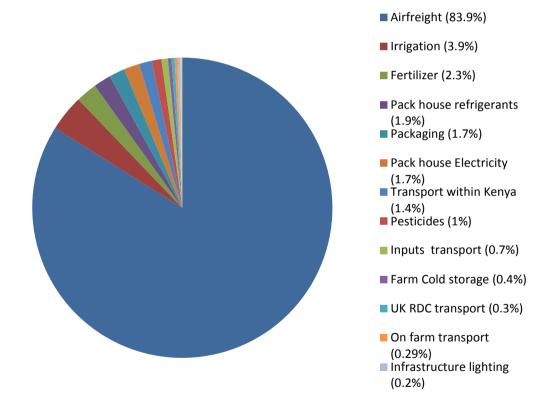
Farming protocols:

- •IPM
- •LEAF
- Organic
- Conventional

Farm type:

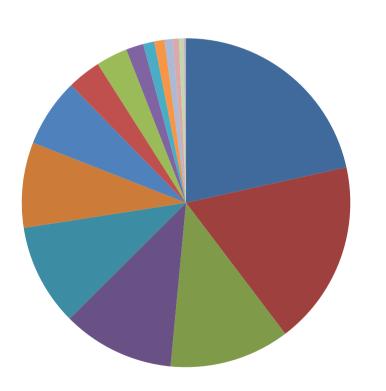
- Smallholder
- •Grower/exporter

Yield


Irrigation method

Soil type

Packaging regime


Weather

Vegetable 1- 5.89kg/kg product to UK RDC

From results to strategy

Product A: Production and packing for export - 0.998Kg CO2e/Kg product

Breakdown of CO2e emmissions

- Packaging (22%)
- Fertilizer production (18%)
- Irrigation (11.8%)
- Pack house refrigerants (11%)
- Pack house Electricity (10%)
- Produce & product transport (8%)
- Pesticides (7%)
- Soil N2O (3.3%)
- Land preparation Diesel (3.1%)
- Infrastructure lighting (2%)
- Farm Cold storage (1.1%)
- Onfarm transport (1%)
- Inputs transport (1%)
- Fertilizer UREA (0.6%)
- Pack house diesel (0.5%)
- Transport refrigeration (0.2%)

Key findings

LCA - Enabling factors for effective strategic planning:

- Holistic approach
- Direct observation- Operations audit
- Comprehensive data collection
- Realistic and creative approach to modelling scenarios
- Staff awareness, enrolment and training in the process
- Deeper insight/examination of supply chain operations
- Understanding of wider horticultural good practice

Benefits for company:

- Immediate carbon, water & cost savings
- Strategic plan for WF and CF reduction
- Identify R &D opportunities
 - longer term strategies
 - Complementary industries within Kenya
- Positive marketing materials and information for customers

A Kenyan LCA service for Kenyan horticulture, industry and business

THANK YOU

QUESTIONS?